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The dependence of the quantity Sh (P + l)‘i* P-‘/s on \ at 1 is shown in Fig. 3. This 
q~nti~remains constants for For / \( 1 and increases as \ of \ increases for 1 Wf / > f . 

In conclusion we note that in the limiting cases of homogeneous transladonal (01 --f 
0) and homogeneous shear (1 cot 1 --t oo) flows the expressions (4.10) and (4,ll)agree 

with those obtained earlier in [ 1, 3, 41. 

The authors thank G. Iu. Stepanov for valuable comments. 
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Systems of integral equations, originating in plane and axisymmetric contact 
problems of elasticity theory in the case of cohesion of a stamp to a body, are 
studied. A method is developed which is based on factorization of matrix func- 
tions of a special kind and its foundation is given. Applications of the method 
in static and dynamic problems are presented. The method is especially effect- 
ive in dynamic contact problems of stamp vibration on the surface of a layered 
medium or a cylinder. 

Other methods of solving contact problems with cohesion have been proposed 

in [l - 8-j. 

1. Systems of integral equations of the following two kinds 

i rmnqn = fm (41 xE:Q, ??a=%,2 (I. I) 
?I=1 

1 T 
r n&n = 2n 

as 
R,,(u) ei”(s-Wuq,, (Q dE, B e [- a, UJ 62) 

-a 0 
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are examined below. 

The contour o in (1.2), where the functions R,, (u) have singularities, is located in 
conformity with the rules established in [9, lo]. In particular, it coincides with the real 
axis in static problems. The contour oi is the part of the contour ci lying in the right 

half-plane. 

let us consider the elements of the matrix R (u) to be regular in the domain con- 
taining the contour CT, and to possess asymptotic behavior at infinity 

H,, (U) = C 1 u j-1 [I -+ 0 (&,I 

R,,, (u) = iBu-’ [I + 0 (u-‘)I 

C>lBI, lmB-0, u+&x, 

Let us distinguish two cases: (a) the contour o coincides with the real axis ; then we 
consider the matrix R (u) to be positive-definite ; (b) the contour o has the position 
indicated in 19, lo]; in this case we consider the elements of the matrix R (u) to be 

connected with the real functions IC,,,L (u) on the real axis by means of the relation- 

sbips 
Rm, (4 = h-m, (1~1, R,, (u) = --I&, (u) = Xl, (71) 

where the functions K,, (u) are even, K1, (u) is odd and all have the same single 

poles + ck (k = 1, 2, . . . . p) on the real axis. 
The correct solution procedure of the systerns (1.1) - (1.3) on the subspace &I p of 

some weight space [ll] consisting of functions with a carrier in [--a, a] or IO, ~1 is 
proved easily under conditions (a). We should note that L, c lill p (a > 1). 

The equivalence of the systems to equations of the second kind with a completely con- 
tinuous operator in this subspace is proved in case (b). The author succeeded in proving 

uniqueness in case (b) only in L, and under the following assumptions 

1) [Kit-l (&)I > 0 

2) [Kit-l (L)1’[Kz2-1 (%Jl’ > {IK,,-r (5Jl’)2 
3) In the case of the system (1.1). (1.2) rational functions nnm (u) , bounded at 

infinity and with poles at the points + Sk (h: = 1, 2, . . . p) exist such that the follow- 

ing inequalities hold on the real axis 

K,, (UP,, (4 + iK,, (u) P,z(u) > () 
lK,, (u) KS2 (u) - K,z2 (u)lIP,, (u) P,,(u) - PI, (@‘,I (~11 2 0 
P,, (u) = I--l)m+?~rInm (u)[II,, (u)IT,, (4 - flI,, (u) ~~2, t4I-L 

In the case of the system (1.1). (1.3) the requirement of evenness and boundedness of 
the functions nrnm (u) and u n,,, (u). m. =# n , is added. 

Let us henceforth consider the formulated uniqueness conditions for the solutions in 

L,, a > 1 to hold. 

2. Important to the construction of solutions of (1.1) - (1.3) is factorization of the 
matrix function R (IL) i.e. its representation as ~121 
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R (u) = MI1 (u) M, (u) 3 NY1 (u) N_ (u) (2.1) 

Here the matrices &I+ (u), N, (u) have elements which are regular above the con- 
tour o, while the determinants are different from zero in this domain. Elements of the 
matrices M_ (u), N_ fu) possess these same properties in the domain below the con- 

tour o. The factorization (2.1) of the matrix R (u) can be realized in conformity with 

general theorems in [12]. 
An approximate factorization of the matrix functions will play an important role in 

the construction of effective approximate solutions of the integral equations system. 
In conformity with the methods in [13], let us construct the matrix R” (u) whiah ap- 

proximates R (u) in such a way that each element on the real axis satisfies the condi- 
tions of the theorem in [ 131. It is easy to show that these conditions indeed assure near- 
ness of the solutions of the systems of equations in a metric uniform withweight. Let us 
introduce the functional-commutative matrix Q, (rc) with elements (Pi,, (u) ofthe form 

011 = (P22 =; R,, (ujv ‘pl‘z = 4721 = Rl2 (u) = Xl, (24) 

It is known that factorization of these matrices is carried out by means of scalar for- 
mulas by using functions of the matrices and the following representations consequently 

hold 
<D (U) = a, (U) @_ (u) = a._ (u) a+ (n) 

The form of the elements rp$,, (u) is given by the relationships 

2&Z (n) = & (n) + T+ (u) 
ZC& (u) = -2q3,,* (ZL) = i IS* (u) -- T, (u)l 

(2.2) 

(2.3) 

Here S+, T_t are obtained as a result of factorization of the functions 

S,S_ = R,, - iRlz, T,T_ = R,, + iR,, (2.4) 

relative to the contour 5. 
It is easy to study the asymptotic properties of elements of the matrices @+ (u). It 

turns out that the relationships 

C’-‘Cpllf = (F iu)-Q + (f iu)-% + 0 (u-1) 

o-lCP& = (T iu)+f - (F iu)-% + 0 (u-1) 

(T z “I/-cm, 8* = 1/Z & in-’ arcth B / C 

(2.5) 

are valid for them in their domains of regularity. 
Now, let us introduce the matrix 

EI (u) = @,I1 (u) R (u) @,T1 (u) (2.6) 
whose elements are 

Hll (4 = 1 - l/* CPU- IL (&Pi,+ + FJ (4’pll+l 

H22 (uj = 1 + l/4 ‘p11- [L (ujcp,,+ - P (uj%,+l 

Hl2 (uj = Ii4 ‘p12- [P (4%2f - L (Ujcpll’l 

Hz1 (u) =I l/4 ‘p11- K (uj’p12+ + P (~j(pn+l 

L(u) =~ (X2, - R,,)[det CD (u)P 

P (u) = (R,, + R,,)[det CD (ujl-l 

(2. 7) 
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Aslul+m, their asymptotic behavior is given by the relationships 

H,, fu) = 1 + 0 (u-l), H,, (u) = 0 (u-l), mfn f2.8) 

The analyticity of elements of the matrix H (u) as well as the estimates (2.8) show 

that it belongs to a dissociating algebra, and hence admits of the factorization [12] 

H (u) = H- (u) H, (u) = T, (u) T_ (u) (2.9) 

Taking (2.8) into account we obtain the first (right-sided) factorization (2.1) of the 

matrix R (u) on the basis of (2.9). The second (left-sided) factorization (2.1) of the 

matrix R (u) is constructed perfectly analogously, where it is sufficient to interchange 
@+ and <D_ in (2.6) and to use the second formula in (2.9). 

Let us perform the first factorization (2.9) approximately. To this end, let us repre- 
sent the matrix H (u) by using the ~ombina~on of two matrices Hk (u) (k = ‘i, 2) 
with the even elements 

H tu) = 13, (u) + uH, (u) 

The elements of the matrices H,, H, are bounded at infinity and can have a finite 

number of poles and zeros on the real axis, Let h (u) be an element of one of the mat- 

rices Hk which is bounded at infinity, and has the poles I_& yk (k = 1, 2, . . . . a) 
and zeros & 6k (1~ = 1, 2, . . . . fi) on the real axis. Let us introduce a function ~~~~) 
bounded at infinity, of the form 

h,(u) = h (u) jj 
k==l 

“,I 1;;: 

Here y = max (a, 0). If a > p then ak (k > p) are arbitrary pure imagin- 
aries; this also occurs for p > a and Tk (k > a). Therefore, h, (u) is an even 
continuous function on the whole axis. let us approximate the function ho (u) on the 
whole axis by rational function in a uniform metric. To this end, let us map the half- 

axis on the segment [O, l] by setting 

The function g (x) continuous in [O, l] is approximated to any degree of accuracy 

by Bernshtein polynomials, i. e. 

g(x)== &[+J c $X8 (1 .- x)N-s = g, (2) 

Therefore, the rational function approximating 1~~ (u) on the whole axis is given by 

the relationship 
&i (u) = g, 1z.G (u2 + /42)-f] 

Using this method,the matrix G (u) with elements from rational functions approxima- 
ting the matrix H (u) on the whole axis, is constructed. 

The matrix G (n) with the described properties is facmrized, asis know&in finite form 
1147, Finally, the first approximate factorization of R (u) is given by the relationship 

(2.1) in which 
MI1 (u) z @_ (u) G_ (u), M, (u) =: G, (u) @+ (u) 

The second approximation (2.1) is constructed analogously. 
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3, By constructing the factorization of the matrix R (u) we reduce the system of 
integral equations to equations of the second kind and we construct their approximate 

solutions. 
To this end, let us introduce the vectors 

Q (u) = {Ql(u), Qz (4) (3.1) 

for the cases of (1.2) and (1.3), respectively, 

Moreover, let us use the notation 

xk (a, a, n) are regular functions in the lower half-plane, subject to the condition in 

this domain 
i I/ix1 IT,@) (an) -+ 1, l/aXzJn (au) * 1 (3.4) 

as 101 I-+oc 
Let 0 (a, p, a) and xk (a, a) denote diagonal,second-order matrices with the ele- 

ments Or (a, p, a), 0, (a, p, a) and xk (a, a, I), xk (cc, a, 0) .respectively. 
Let us continue’the system (1. l), (1.2) on the whole axis by setting the right sideequal 

to the vector (Pk (X) = {(Prk (z), (P2k (2)}, where k = 1 for II: > a, and k = 2 
for x< --a. 

Furthermore, let us use the notation 

X (u) = - M_ (24) e-iuza 
s 

‘p, (x) e-iu(x+a)dx (3.5) 

--oo 

Y (- U) = - N, (u) eiuza [ cpi (x) eiu(x-a) dx 
a 

F(u) = \ f(x) eil*+lx, f = VI7 f2) . 
-a 

Let us apply a Fourier transform (generalized if the (Pk (2) do not decrease) to the 
continued system (1. l), (1.2). We then arrive at the relationship 

K (CL) Q(u) = F(u) - MI’(u) e-znitLX (u) - Nil (u) e2aiuY (-- u) (3.6) 

which is valid on the contour o . 

Now repeating the known method elucidated in the one-dimensional case in [15], say, 
we arrive at the following system of equations of the second kind to determine X, Y: 

X(u)= - &S M_ (- u) [ N;l(- st) e+aiaY (a) + e-aiaF( - a)] & (3.7) 
0 a + U 

Y (u) = - -&-s N+(a) [MI1 (a) e-2aiaX (a) + e-aiaF (a)] -2% 
a+u 

0 
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If f (z) E c2 (-a, a), then as is easy to establish, S, Y are regular in the domain 
below the contour o including the contour itself, and decrease there with the weight 
uy, y< I. 

Determining the vector functions X, Y from (3.7), we then find Q from (3.6), and 
besides, (I~ (z) as well by taking account of (3.2). By virtue of the equivalence of the 
system (1. l), (1.2) uniqueness holds for the system (3.7) in the mentioned class. Since 
the integral operators are completely continuous in the space of functions which are con- 
tinuous on the contour o with weight, as is easily confirmed, then the system (3.7) is 
solvable. 

Repeating the same reasoning in the case of the system (1. l), (1.3) the case (b), and 
applying Eessel transforms of the first and zero orders, respectively, to the first and se- 

cond equations, we arrive at a vector relationship on the contour o such as 

K (u) Q (u) = F(u) t- -&- i 8 (~1 PI a) N?(P) x,(P, 4 Z (P) d? (3.3) 

Applying the same methods to (3.9) as in the reduction of the relationship (3.6) to 

the system (3.7) by using (3.4) we obtain the following equation of the second kind to 
determine Z : 

Z(u) = -,&s $ N+(a)[C(a, P)N;l(p)Z(P) t ~,(a, a)F(z)W x (3*g' 
r1r2 

dB da 

(a - IL) (cc - f32) 

C(a,P>=(a+P>I-8(a,P,a)~l(P,u)~2(a,u)(a2-P2) 
u > 1‘,> rz 

(3.10) 

The contours rr, r2 are located in the domain of regularity of the matrix functions 
R (u). The sense-of the inequalities (3.10) has been clarified in [16]. By simple mani- 
pulations (3.9) is also reduced to an equation with completely continuous operator in the 
same space as for x, Y and its single-valued solvability for f (T) E C, is proved 

analogously. The form of (3.9) is convenient for the construction of an approximate 

solution. 

4. To construct approximate solutions of the systems of integral equations (1. l), let 
us perform an approximate factorization of the function (2.4). To this end, let us apply 
approximations analogous to those used in 1171, Namely, to construct the first factor- 
ization of (2.4). let us set 

hk (U) = (R,, - iX,,)U+-1 (U, k)D_-i (U, Ic) = hki (U) + (4.1) 

Uhk, (u) = 1 + 0 (u-l), It= I,2 

D, (u, 1) = cr (b - iu)-‘j+, II_ (u, 1) =: 5 (b )- iu)+-, 00 (4.2) 
D, (u, 2) = 52fi-11Y (g2 I p - iu J P)l?’ tb, / p -- iu ! p) 

D_ (u, 2) = 02p1r (gl / p - in / p)P (0, / p - iu / p) (4.3) 
0, - g, = ‘iz @c-l (n -f- i In A) 

112 - g2 = Ii2 pn-’ {n - i 111 A), h := (C -t B)(C - R)-’ 
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Here the functions hks (u) are even, and can be approximated by rational functions 
by using the method expounded in Sect. 2. Therefore, the function hk (u) approxima- 

ted by a rational function is easily factorized, and besides. the first approximate fac- 

torization of (2.4) is easily constructed by taking account of (4.2). (4.3), Hence 

s + = D+ (% k)&.+ (U), 
hk (u) = hk+ (u)hk- (u) 

s_ s D_ (u, k)h,- CL) 

where hk* (u) are rational functions bounded at infinity, 
Furthermore, applying methods expounded in Sect. 2 to the factorization of the matrix 

functions R (u) , we see that the elements of the matrices R+ (u) are combinations 

of the functions D+ (u, k) multiplied by rational functions. 
This circumstance permits application of a method associated with deformation of the 

contours in the lower half-plane for obtaining the approximate solutions of (3.7), (3.9). 
If the contour intersects poles of the integrands when deformed, then residues will ap- 
pear in the right sides of the relationships (3.7), (3.9) and the integrals over the contours 
deformed in the lower half-plane will decrease. When sufficiently small, these latter 

can be neglected in constructing the approximate solutions. As a result, exactly as in 

the one-dimensional case [ 151, the construction of the approximate solutions of (3.7) 
(3.9) reduces to solving a finite system of linear algebraic equations. Let us note that 
since branch points -+- ib are encountered when using the approximating functions 

D, (u, 1) , then thenumber b must be selected as large as possible for deformation 
of the contours in the lower half-plane at a sufficient distance. 

Exactly as in [ 181, to describe the solution in the neighborhood of the stamp edges it 
is expedient to use the approximation (4.2), while (4.3), correspondingly, for the inner 
domain. 

Omitting the calculations, let us present the general form of the approximate solutions 

of the integral equations (1.1) - (1.3) in the inner domain and in the neighborhood of 
the edges. 

In the case of (1.2) we have 
N 

qk (Lz) = c fa f: Lx)-“+, -c-+a 
In the case of (1.3) 

clh- (d = 2 +kll-[k/zl b, (k) xl, x E [O, a) 
)‘=l 

qk (x) = $a - x)-‘+, Z -+a 

poles of the elements of the matrix N--l (u) corresponding to the 
1 and the lower row for k = 2. The 5, (k) and the matrix 

Here Z, (k) are 
upper row for k = 
M+-’ (u) are similarly interrelated. 

N 

As illustrations, let us present the matrix-function R (u) encountered in problems 
about the effect of stamps on an elastic layer in the dynamic and static cases. 

The problem is thevibrationsof a stamp lying without friction on a rigid base 

K,, =. - iI2 X&J~ ch or ch o,A-l (ZL) 
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I-& = - ‘I2 x,20, sh crl sh u,A-' (u) 
R12 = -R,l = i [(u2 - 112 q2)sh u2 ch u1 - ulu2 sh CT, ch u,lA-l (u) 

- A (u) = (u 2 - 11~ x22)2 ch u1 sh u2 - u2cr1u2 sh u1 ch u2 

Uk = V- u2 - Xk2, Xl2 = pow@ + 2p)-1, x22 = po%.s/_&-l 

where p, h, p are the density of the layer material and the Lame’ coefficients, respec- 
tively, h is the layer thickness, and o is the frequency of stamp vibration . 

It is seen that the matrix R refers to case (b). Problems about the vibrations ofstamps 

cohering to a layered medium and elastic cylinders reduce to systems with analogous mat- 
rices. 

Case (a) holds in the static version (o = 0) of the considered problem, in problems 

of rigid cohesion of stamps to elastic wedges, in hydrodynamic problems of the vibrations 

of plates on a viscous fluid surface. 
The results of the research were reported to the Thirteenth International Congress of 

Theoretical and Applied Mechanics in Moscow. 

The author is grateful to I. I. Vorovich for attention to the research, valuable com- 
ments, and discussion of the results. 
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Simplifications of the computations of statics and the small vibrations of regular 

mechanical structures are investigated. On the basis of the method of an ele- 

menatry cell it is shown that these simplifications hold for all regular systems 
which are representable as elementary in the sense of some irreduciblerepresen- 
tation of the subgroup D!$ c D$*. where D$r is the space symmetry groupof 
the corresponding infinite regular system. The boundary conditions of such ele- 
mentary systems are described in general form. The essence ofthe simplifications 

is the passage from a computation of the regular construction over to computa- 

tions of a finite number of elementary systems in the sense of the group D$* 
whose types are indicated. The loading of the elementary systems is defined by 
using a developed effective method of decomposing the load of the initial regu- 
lar system. 

A number of investigations [l - 41 is devoted to a study of regular mechanical 
systems. These investigations are associated with translational symmetry of an 
infinite regular system in [ 21, which permitted use of the group representation 
theory apparatus developed for applications [5]. However, the most general and 
complete results in the mechanics of regular systems should be expected in a 
more perfect accounting of the symmetry elements of an infinite regular system. 


